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Abstract

In a series of papers, it has been shown that algorithms for dense linear algebra op-
erations can be systematically and even mechanically derived from the mathematical
specification of the operation. A frequent question has been whether the methodology
can be broadened to iterative methods. In this paper, we show preliminary evidence
that this is indeed the case for so-called Krylov subspace methods.

Our aims with this are two-fold: first of all, we show how the FLAME paradigm can
simplify the derivation of subspace iteration methods. In view of this, the fact that we
only derive the classical conjugate gradient method should be viewed as a promise for
the future, rather than as a limitation of this approach.

Secondly, and more importantly, our use of FLAME shows how mechanical reasoning
can derive full algorithm specifications from the constraints (for instance, orthogonal-
ity conditions) on the generated results. If we tie this to ongoing research in automatic
optimized code generated in FLAME, we see that this research is a necessary building
block towards automatic generation of optimized library software.
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1 Introduction

We present the Conjugate Gradients (CG) algorithm [8]] in the FLAME framework [7,
3L 112 2]]. With this, we have two goals in mind. First, we show how FLAME can be
used to simplify the process of deriving iterative methods. Second, we make a case
that a FLAME-based environment for deriving new iterative methods is a distinct, and
attractive, possibility.

Traditional expositions of the CG method, and ones related to it, posit the basic form
of relations between matrices and vectors, and compute the scalar coefficients in them
by ‘lengthy induction arguments’ [[11]]. In the spirit of Householder’s derivation [9]],
we summarize vector and scalar sequences as matrices; the FLAME framework then
allows us to derive in a formal manner the actual iteration from properties on the
quantities constructed in the algorithm. The big advantage here is that we can dis-
pense with quantified statements over sequences, and instead consider predicates over
simple, unindexed, objects. Simultaneously, the inductive arguments that have always
been at the heart of traditional expositions are captured in a framework that guides the
derivation of the algorithm and the proof of its correctness.

As a demonstration of the potential of this approach, we derive a CG method for
nonsymmetric systems. The conciseness of our derivation should be contrasted with
the lengthy research papers in the classical approach to polynomial iterative meth-
ods [13[10].

Beyond simply presenting an alternative derivation of these methods, we argue that the
essential calculations in a FLAME worksheet can be derived mechanically from the
loop invariant of the algorithm. Coupling this to ongoing projects for automatic code
generation from FLAME worksheets [2] raises the possibility of automatic generation
of numerical libraries. Krylov subspace methods are then merely a proof-of-concept of
a much more general idea: the mechanical derivation of algorithms and tuned library
software incorporating these algorithms.

2 Theory and Notation

In this paper we present the Conjugate Gradients method using a block formalism [,
9. Rather than positing the basic form of the coupled recurrences of residuals and
search directions, we derive their existence as it were ‘from first principles’. This will
give a clear separation between the basic form of the update equations, which hold
for all polynomial iterative methods, and the specific values of the coefficients which
follow from orthogonality requirements.
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That said, we start by showing a few specific iterative methods, and how they fit the
common pattern that we will derive.

2.1 Some iterative methods

Iterative methods for linear systems of equations come in a great variety, and with
greatly differing levels of sophistication.

Richardson iteration The simplest method for iteratively solving Ax = b is probably
the Richardson iteration

Xit+1 :xi—ocr,-,i:O,...
where r; = Ax; — b. Multiplying this equation by A gives
A(xi+1 —xi) = Ax,-H —Axi :Ax,'+1 —b— (Ax,' — b) =riy1— = —OLArl-

so that riy; = (I — 0A)r;. This tells us that the residuals converge to zero and that
therefore the iterates converge to the solution, if the spectrum of (I — aA) is bounded
in magnitude by one: |A(I —0A)| < 1. In the commonly encountered case where the
eigenvalues of A satisfy 0 < Ay < ... < Ay_j, it is easy to show that the optimal o is
2/(ho +Ay_1). For future reference we will remark that r; = n!) (A)ry where () (x) =
(1 — o)’ is an i-th degree polynomial.

Stationary iterative methods The Richardson iteration is a first example of a station-
ary iterative method; more general methods have the form
Xit+1 :x,-—Mflri, i= 0,

A similar analysis shows that the condition |A(I —AM~')| < 1 now guarantees conver-
gence.

Steepest descent Next, Steepest Descent (SD) is the method
Xip1 =xi—or;, i=0,...

where a; is chosen to minimize ||r;+1||2. Thinking of this as finding the optimal step
size along the line through x; in the direction r; explains the term search direction for r;.
The convergence analysis for this method is more complicated; we will only remark
that now 71| = HOgjgi(I — OCjA)ro.
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The Conjugate Gradient method The CG method is most commonly presented as
coupled iterations:

Xit+1 = X;i —O;p;
pi=ri—Bipi-1

With a little algebra, this can be seen to be equivalent to

Xit+1 :xl-—Z'yijrj. (1

J<i

The coefficients o, B; are chosen to ensure the orthogonality of the residuals ;.

Summary The iterative methods in this section are seen to conform to a scheme
where the iterates are updated with a single vector, which itself is a combination of
residual vectors.

2.2  Block formalism

The above presentation is typical for how textbooks on numerical linear algebra may
progress, going from simple to more complicated methods, and arriving at the general
scheme (I). Here we show that this scheme is in fact a natural choice, and we express
it in a block formalism. This section serves to familiarize the reader with the block
formalism, and to establish the basic equations, as well as the question of their essential
degrees of freedom. These dofs will then be derived in subsequent sections.

Let the linear system Ax = b be given, let xy be any (initial) vector and define ry =
Axg — b, the initial residual. Then ry = Axo — b implies that x = A~'b = xg — A~ .
Now, the Cayley-Hamilton theorem states that for every A there exists a polynomial ¢(x)
such that ¢(A) = 0. Without loss of generality, we can write ¢(x) = 1 + xm(x) with
7 another polynomial. Then 0 = ¢(A) = I +Am(A) and hence A~! = —w(A) so that
x = xp + ®(A)ro. In theory, if we were to know the coefficients of m(x), we would be
done.

The problem is that we don’t know the coefficients and even if we knew them, the
degree of the polynomial might be too high for practical use. Thus we arrive at the
notion of a sequence of polynomials {ﬁ(i) }i~0 and a sequence of approximations

Xi = X0 —i—ﬁ?(i) (A)r(), i>0 (2)

that, we hope, converge to the solution x, to a reasonable accuracy, in a reasonable
number of iterations.
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We now need the basic concept of a ‘Krylov sequence’, which, given n x n matrix A
and initial vector kg, is defined as the matrix with infinite number of columns

K(A,ko) = ( ko | Ako | A%ko | -+ ).

In other words, the j-th column of K(A, ko), k j» 1s defined by the recurrence

kj=
Akj_1 otherwise.

{ko ifi=0

With this, we rewrite (2)) as

Toi

Xir1 =x0+K({A,ro) | i |, 3)
0

where T;; is the i-th coefficient of the polynomial 7). Introducing the matrices

0 0 - 1 1 - -1 -1 -
J=|(1 0 ] andE=]|0 0O | sothatJ—E=| 1 0O | @
0 0 . 0 .

we can write Equation (2)) in matrix form as
X(J—-E)=KU, (5)

where from now on we use K for K{(A,ro), X = (xo,x1,--+), and U is the upper trian-
gular matrix containing the 7;; coefficients. Using the matrix J, the definition of the
Krylov sequence can be written as

AK = KJ. (6)

If Equation (6) denotes a relation between finite segments of the infinite series K, we
have to worry about correctness in the last column. We ensure this by a notational
shorthand. First of all, we let the matrix J be rectangular with one more row than
columns. Second, if K is a matrix with n columns, then K denotes the matrix consisting
of the first n — 1 columns of K. With this, equation (6)) becomes

AK =KJ.
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Equivalently, by substituting U « U (I —J'), we find
X(J—1)=KU (7)

which is now shorthand for the common form x;, | = x; + yi0) (A)ry for some sequence
of polynomials {n(i)}i, where the i-th column of the upper triangular matrix U holds
the coefficients of polynomial (). This leads us to our formal definition:

Definition 1 We call a sequence X = (xg,x1,...) a polynomial iterative method if it
satisfies

Xit1 = X;i + TC(i) (A)r()
for some sequence of polynomials {n)}; with deg(n?)) = i. Notation: X = P({m;};>0,

A,XO,b>.

Of equal interest is the corresponding sequence of residuals: R = (rg,rq,...), where
ri=Ax;—b:

Definition 2 We call R a ‘residual sequence’ if it is the sequence of residuals of a
polynomial iterative method X generated from A, xg, and b:

R=AX —be orri=Ax;—b

where e = (1,1,...)". Notation: R = R(A, X, D).

Lemmal Let A, f and X be a given matrix, vector, and sequence, respectively. Let
R=R(A,X,D). Then

a{niep(n)}: X = P<{ni}i207A7x07b>
& Fyeum: RA,X,b) = K(A,x0,b)U

where U™ is the set of upper triangular matrices U satisfying ug, = 1.

Proof: Suppose X is generated by a polynomial iterative method P{({m;}>0,A,x0,b).
Multiplying the equation

Xi+1 = X0 + ﬁ,‘(A)I’()
by A and subtracting b on both sides gives

riv1 = ro+Am;(A)ro,
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in other words, riy1 = 0;11(A)ro with ¢;(x) = 1 +xm;(x). This can clearly be written as
R=KU where U = U (¢;) € U™ and K = K (A, ry). It is easy to see that all implications
in this proof are equivalences. .

With X a polynomial iterative method and R its residual sequence, we notice that X
can also be defined as

X(J—I)=RU (8)

for some upper triangular matrix U. The above notational convention of underlining is
extended to letting J — I be rectangular with one more row than columns and writing
X(J—1I)=RU.

We can now prove:

Lemma 2 Residual sequences satisty AR = RH with H an upper Hessenberg matrix
with zero column sums.

Proof: Taking equation (8]), multiplying by A, and adding — f + f to the lhs, gives
R(J—I)=ARU = AR=R(I-J)U™ ' =RH

where we note that H has zero column sums as stated. We omit the proof that this is in
fact an equivalence. °

Now we consider factoring the H matrix.

Lemma 3 Let H be a Hessenberg matrix of size (n+ 1) x n, then H has zero column
sums iff its factorization is of the form

H=(-J)U.

We now derive the coupled recurrences form of polynomial iterative methods:

APD =R(I—J)

AR =RH
P(I+U)=R

& AR=R(I-J)D"'(I+U) <
H has zero column sums -

€

TR-10-02 6
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In the right side of this equivalence, we recognize the traditional formulatiorﬂ

rig1 = ri—Apidii,  Piy1 =iyl — ijuji-
J<i
Thus we have derived a basic form which holds for any polynomial iterative method,
though some methods use an implementation that is mathematically equivalent to it.
Various iterative methods, such as CG, MinRes, or BiCGstab, all follow from imposing
certain conditions on R, or equivalently on the coefficients of D and U. For instance,
stationary iteration and SD correspond to U = 0; the Conjugate Gradients method
corresponds to U being single upper diagonal (upper bidiagonal), with values deriving
from the orthogonality of R.

In the remainder of this paper, we will take the block form (9) for given, and show how
FLAME can be used to derive the coefficients in D and U in the specific case of the
Conjugate Gradients method.

3 Applying the FLAME Methodology to the CG Algorithm

We now show how the FLAME framework can be used to derive iterative methods such
as the CG algorithm. This section shows how the basic block form of the CG algorithm
leads—through a systematic process—to the predicate that needs to be satisfied by the
loop body of the algorithm. Such a predicate is translated into concrete instructions in
the next section.

The reader should imagine the “worksheet” in Fig. |1} as being initially empty. We fill
it out in the order indicated in the column marked “Step”.

Step 1: Precondition and postcondition The precondition and postcondition indicate
the states of the variables before and after the algorithm is executed, respectively. This
includes the size the variables, as well as properties such as symmetry or invertibility.

The defining equations for iterates, residuals and search directions, under orthogonality
of the residuals are given by

X(I—J)=PD, APD=R(I-J), P(I+U)=R, R'R=Q (diagonal),

1. In some early literature on conjugate gradients, this is called the ‘coupled two-term recurrences’
form of the method, as opposed to the three-term formulation in which no search directions appear. In
yet another exposition of conjugate gradients, it is considered a polynomial acceleration of a stationary
iterative method.
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and we will construct the postcondition from these.

We remark that, given the quantities in D, the sequence X can be computed almost
trivially from the search direction sequence P, and other quantities do not depend on
it.

In addition to the above equations, which are going to form the postcondition, from
them we can derive other relations. These are redundant, but can be added to the post-
condition. (We will discuss the ramifications of this in section E}) In particular, we
derive

P'AP = (I+U)"'R'R(I—-J)D™' = (1+U)"'Q(I—J)D ", (10)

which implies that P’AP is upper triangular (and diagonal if A is symmetric). Now,
the precondition is {Rep = Axo —b, A € R™*" xo,b € R"} where ¢y = (1,0,0,...)".
where x( is an initial guess for the solution, and the postcondition is formed by com-
bining the precondition and equations (9)) and (10):

APD=R(I—J)APD=X(I—J)APD=R(I—J)AP(I+U) =RA
R'R = QA P'AP = lower triangular/
Reg =Axg—b, A€R™" x9,b€R"

This information is entered in the worksheet.

Determining the Partitioned Matrix Expression We are interested in expressing the
postcondition in terms of partitioned matrices. This yields

Ir—Jr] 0 0
(APLDL |APMdM |ABRDR) = (RL | erRR) —e. 1 0 ’
0 eo | Isr — JBr
Irp—Jr] 0 0
(PLDLlpMdM |BRDR> = <XL|xM|XR ) - |1 0 7
0 eo | Isr — IR
Irp +Urp \urm | ure
(PLlPMlPR) 0 1 UMR =<RL|rM|RR),
0 0 |Zsr+Usr
Ry «olo\ [ Par.| Papy | PP «ofo
E (RLll"MlRR)Z o|xlo |.| p\AP.| P ApM | PYyAPR | = | x|x]|0
\ R 010« PLAPL | PoApy | PLAPR |«

TR-10-02 8
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(11)
where % indicates that the exact value is not of interest, and e, = (0,...,0,1)".

In general, the PME is true regardless of the size of the partitioned objects. In other
words, we are not splitting the operands in specific ‘cut’ points, but exposing part of
the operands, without specifying any particular size. On the other hand, the equalities
only hold if the partitionings are such that the Top-Left (and Bottom-Right) quadrants
of the triangular & symmetric matrices are square.

Note our convention that upper case letters (R, P) denote matrices, lower case vectors
(e,r, p), and lowercase Greek letters scalars (8, ®).

Step 2: Loop-invariant The loop-invariant is a predicate on the state of the variables
that is satisfied before and after each iteration of the loop. The Fundamental Theorem
of Invariance establishes that if the loop completes, then the loop-invariant and the
negation of the loop-guard hold true after the loop. This is all captured in Fig.

One of the key concepts of the FLAME methodology is that of selecting a loop-
invariant a priori, and then constructing an algorithm around it. In terms of program
correctness this means that we set up a proof of correctness first, and then build an
algorithm that satisfies such a proof.

To derive a loop-invariant, it is observed that while the loop executes, not all results
in the Partitioned Matrix Expression (PME) have yet been achieved. Thus, the loop-
invariant consists of subresults that are part of the PME. For space considerations we
will not go into further detail here. The point is that there is a systematic way of choos-
ing loop-invariants from the PME, and that choice is often non-unique (which then
leads to different algoritms). We choose the loop-invariant

r

APDL=( Ry | ru ) (I”;J”> NPLDp=( Xp | xm ) (I”;J”> A
r

I
(PL‘PM )<TL—BUTL uTlM>=(RLrM )/\

(R’LRL|R’LrM>:<*|O>/\<PiAPLlpiAPM >:<*|0>
\ l’IMRLll’tMI"M Ol* pﬁ\/[APLlpZ/[APM *x | X '

(12)

Steps 3 and 4: The loop-guard and initialization The loop-guard is the condition un-
der which control remains in the loop. If the loop-invariant is maintained, then it will

TR-10-02 9
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be true after the loop completes and the loop-guard will be false. Together these pred-
icates must imply that the post-condition has been computed. Thus, the loop-invariant
and the postcondition dictate the choice of the loop-guard. This loop-guard is given in

Fig.

Similarly, the loop-invariant must be true before the loop commences. Thus, an initial-
ization, given in Step 4 of Fig.|1} is dictated by the precondition and the loop-invariant.
(We note that the initial partitionings of the operands are merely indexing operations.)

Step 5: Traversing the operands The computation must make progress through the
operands, so that the loop-guard will eventually be false and the loop terminates. This
dictates the updates of partitionings in Steps 5a and 5b. In Step 5a we split off one
column from the ‘R’ block, going from a 3-way to a 4-way partitioning, for instance

(Relm|Re) = (Ro[r]r|Rs):

after the intervening computations, in Step 5b we compact the first two partitions into
the new ‘L’-block, for instance

(Rl | Re ) = (Ro[n|r|Rs).

Step 6: The "before’ predicate  The repartitioning of the operands in Step 5a is purely
an indexing step; no computations are implied. Thus, at Step 6 (before the computation
in Step 8) the contents of the different submatrices are still prescribed by the loop-
invariant. These contents can be derived by applying the 4-way partitioning derived in
Step Sa to the loop invariant (12).

This process yields what we will call the before’ predicate:
Joo I+ Ugo | uor
APODOZ(RO|71><.,>7 <P0|p1><T’T>=<Ro|F1>,

P :
before\ / (x]n) «| 0 PLAPy | PiAp: «|o
r _ , = .
_r’l o] n ol = ptlApolptlAp] * | %

(13)

Step 7: The ’after’ predicate At the bottom of the loop the loop-invariant must again
be true. This means that the update in Step 8 must place the submatrices in a state were
the loop-invariant is again true after the redefinition of the partitioned operands (Step

TR-10-02 10
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5b). The state that the submatrices must be in can be derived by substituting equiva-
lent submatrices (as defined by Step 5b) into the loop-invariant after which algebraic
manipulation yields the desired ’after’ predicate in Step 7:

Dy] O J 0
A(Po|p1)<00 81>=(R0|r1><j2z 1>+m(0|—1),
I+Upo | uor | uoz
<P0|P1|P2) 0 1 fon :(R0|r1|r2)v
0 0 1
Pafter Ry x| 0
T(Rolrllrg)z Ojx10 1,
Tz 0]10]| *
PiAPy | PiAp1 | PLAp> x| 0
PiAPRy | piAp1 | pTAp: [ =] * | *
PYAPy | PyAp1 | PR AP2 EAE:

(14)

Step 8: The update Comparing the before and after predicates yields
Patter = Poefore NO1Ap1 = r1—r2) A(Pouoz +V12p1 + p2 = r2)
ARyr2 = 0) A (Fir2 = 0)) A (PyAp2 = 0) A (p Ap> = 0).
The computation at Step 8 of Fig. [I|has to update and compute variables in such a way
that, when executed in a state in which the ‘before’ predicate holds, it terminates and

yields a state in which the *after’ predicate holds. In the next section we show how the
actual computation again follows by a mechanical process from these predicates.

Final algorithm The described process constructs the algorithm by systematically
deriving predicates that indicate the state that the variables must be in, which in turn
dictates the actual computational statements. Eliminating the predicates leaves the final
algorithm.

4 Deriving the update

There are two critical steps in the derivation of a worksheet that are less than straight-
forward for a more complex algorithm like the CG algorithm: choosing the loop-
invariant, and identifying a set of updates of the operands that transform the *before’

TR-10-02 11
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predicate into the "after’ predicate. In the previous section we showed how the loop in-
variant can be derived from the PME; in this section, we focus on how the update can
be systematically derived. This derivation is much more systematic than in previous
papers of ours that focus on dense matrix computations, for the reason that in those
cases the update step was relatively obvious.

4.1 Deriving assignment statements

To understand the approach one must first understand some fundamental results from
computer science related to the derivation of algorithms. Consider the triple {Q}S{R}
where Q and R are predicates indicating the state of variables and S is a command in,
or segment of, the algorithm. This is known as a Hoare triple and is itself a predicate
that evaluates to true if the command S, when initiated with variables in a state where
Q is true, completes in a state where R is true. In this triple Q is the precondition and
R is the postcondition. In our discussion in Section |3 and Fig. (1| we have seen many
examples of Hoare triples and how they can be used to reason about the correctness of
an algorithm. A Hoare triple can be used to assert a code segment correct. For example,
{x=m}x:=x+1{x =mn+ 1} takes on the value true.

The next question becomes “Under what circumstances is the Hoare triple {Q}x :=
exp{R} true, where exp is an expression. To answer to this question the operator
wp(S,R) is introduced: this returns the weakest precondition (least restrictive predi-
cate) that describes the state of variables such that if the statement S is executed, then
this command completes in a state where R is true. Now, {Q}S{R} if and only if O
implies wp(S,R).

For sequences of statements {Q}So;S1{R} we introduce an intermediate predicate
{Q0}S0;S1{R} = {Q0}S0{Q1} A {Q1}S1{R}.

From this we see that
Qo = wp(S0; S1,R) = wp(So,{Q1}) = wp(So, wp(S1,R)).

Inductively, if we wish to find a sequence of statements Sp;S;...;Sx—1 such that
{0}S0;S15...;Sk—1{R} then Q must imply

wp(S0;S1;...58k—1,R) = wp(So, wp(S1, ..., wp(Sk—1,R)...)).
We can summarize this by noting that the following must be true:

{0 = wp(S0,01)}S0{Q1 =wp(S1,02)}S1{Q2 =wp(S2,03)} ... {OQk—1 = Wp(Sk—1,R) } Sk 1 {R}

Finally, we recall that wp(”x := exp”,R) equals the predicate R with all instances of x
replaced by the expression exp. For example, wp("x:=x+ 1", x=y+4) ={(x+1) =
y+4}t={x=y+3}.

TR-10-02 12
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4.2  Application to the CG algorithm
The above theory can be used to derive the update (step 8) in Fig. |1} The idea is that

we wish to determine expressions expy, . .., €xp, such tha
{Poefore
{Qo =wp("8) :=expy”, 1)}
S() . 61 = eXpPg

{01 =wp("r2 :=exp,”, 02)}

S1: 1= exp;

{02 =wp("x2 :=exp,”,03)}

S i x0 :=exp,

{03 = wp(Tu2 := exp3”, Q1) }

S3 U2 = eXPs

{Q4=wp("v12 1= exp,”, 05)}

S4 1012 = expy

{Os = wp("p2 := exps”, Pyfter) }

S5 1 p2 i= exps

Patter = Pbefore A(B1Ap1 =11 —r2) A(81p1 = x1 —x2)

A(Pougz +V12p1 + p2 = 12) A (PiAp2 = 0) A (piAp2 = 0)
/\(RBI’Q =0)A (r’l rp=0)A (thl’z =m)

Now,
Qs = wp("p2:=exps”, Pyfter)
Ppefore  NO1Ap1 =r1 —r2) A(81p1 =x1 —x2)
= A(Pougz +V12p1 + exps = r2) A (PiAexps = 0) A (p Aexps = 0)
/\(Rf)rz =0)A (l’tlrz =0)A (r’2r2 =)
from which we deduce that exps = r» — Poupz — V12p1 and
QS = Wp(”pz = —P0u02 —Dlzpl”,Pafter)
Poefore AB1ApL =11 —1r2) A(81p1 = X1 —X2)
= AT A (PeA(r2 — Pouop — V12p1) = 0) A (P1A(r2 — Pottop — 12p1) = 0)
A(R6F2 =0)A (r; rn=0)A (7“’2}’2 =)
Poefore AB1Ap1 =11 —1r2) A(81p1 = X1 —x2)
= N(PyAry — PyAPyugy = 0) A (pAry — plAPougy — piAviapr = 0)
A(Ryra = 0) A (Fir2 = 0) A (rhra = 2)

2. In sectionwe will address the fact that we need not lay out explicitly the sequence in which quanti-
ties are to be computed.
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Similarly, we determine v, := expy = (p|Ar, — p{APoupz)/piAp1 and
Qs = wp("vi2:= (p}Ar, — piAPu) / PiAp:”, Os)
Ppefore  N(O1Ap1 =r1 —r2) A(81p1 =x1 —x2)
= /\(P([)Arz — P([)AP()MOZ = 0) AT
/\(Rf)rz =0)A (r‘tli‘z =0)A (r’2r2 =m)
Next we can determine u := expsy = (PJAPy) ' PiAr, and
03 = wp(Tup := (PYARy) ' PjAr,”, 03)
Ppefore  NO1Ap1 =r1—r2) A(81p1 = x1 —x2)
= AT
ARGr2 =0) A (Firy =0) A (rhr = o)
followed by x; := exp, = x; — 81 pj, giving
0y = wp("x2:=x1—81p1”,03)
= {Pbefore A(O1Apr =r1—1) A (Rf)rz =0)A (7’11’2 =0)A (}'erz =) }
and rp :=exp, = r; —981Ap; giving
Q1 = Wp(”l”z =ry— 51Ap1”,Q2)
= {Pbefore /\(R672 = 0) VAN (r’lrz = 0) A (7""21”2 = 0)2) }
(where R6r1 = 0 is part of the ‘before’ equations and R6Ap1 = 0 can be derived from
them) and finally §; := exp, = r{ri1/r{Ap1 and

Q) = wp(”81 = I’tlrl/}’flApl”,Ql) = {Pbefore /\T}
so that Ppagore implies Qo, as required.

The updates of the variables can then be entered as Step 8 in Figure

4.3 More about the U coefficients

Computing the U coefficients; symmetric case Without stressing the fact, in the
previous section we derived a CG method for nonsymmetric systems; ordinarily the
symmetric case is the first one derived. In our method of derivation, the symmetric
case needs another step of reasoning on the PME level.

We concluded in equation (10)) that P’AP is upper triangular in general; combined with
symmetry of A, this means that P’AP is diagonal in the symmetric case. Also,

PAP=(I+U)"'Q(UI—J)D!

tells us that (/+U) " times a lower bidiagonal matrix is diagonal, hence that I+ U is
upper bidiagonal. Therefore, the up, coefficients no longer appear and we only need to
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Step | Annotated Algorithm: Compute X,R,P,D,U of size m x n so that APD =R(I —J),PD=X(I—J), P(I+U) =R
la {Re() :Axo—b}

Jr. | O 0
4 R— ( Ry | ™ I Rr ), P similarly; J— e ]o] o , U,D similarly
0 |eo| /r

U
2 {APLDLLRLJTLerMet,/\( P I PM ):( Ry I oy )( SL MTIM >/\( Ry I ™ )eob}

3 while n(Rg) >0 do

U u
2,3 {{<APLDLLRLJTL+FM€;/\(PLIPM)(RLIVM)< SL T1M>/\(RLIVM )eob)/\(n(
(Re|rv|Re)— sl 0] o J:,O g 8 8
5a (Ro|ri]|nm ‘ Ry ) > LEWL 0 0 — O’ T o0 ,  U,D similar
P similar 0 | jmr | JBr 0 10 e [ 753
6 {AP()DO = RoJoo — rlet,/\PoUo() =Ro A Poup1 +p1=n AR6R0 =Q /\RBI’] = 0/\)’11}’1 = m; ARpey = b}
8 dy — r’]rl/r’]Apl, r «—ri—Apidy, u;p = rtzrz/rtlrl, P2 < 2 — piu12
Do Joo
A(Py pi1) ( dl) =R rn n)|j 1
0 -1
Uoo uo1 um
7 A PRolpi|p)| 0 1n dy |=(Ro[n|n)
0 0 1y
RB Qo 0 0 P(I)APO P(I)Apl P6Ap2 P(I)APO 0 0
A7 (Ro T rz) =10 o 0 |A|pAP plAp1 PiApx | = | PIAPy  PlAp: 0
rh 0 0 w PYARy  phAp1  phApa PYAPRy  phAp1  phAp)
(RLIrMIRR)‘_ JTL 0 0 ‘1630 8 8 8
5b ( RO -‘lrl | 2| R ) - L}gL .0 JO — ()r ToT o |- U, D similar
P similar JMR BR 010 2| 7o
Uurm
2 {APLDLLRLJTL+VM€;/\( PL I Pm ) RL I m ( T) /\( RL I ™M )eob}
endwhile

U
> { {(APLDLLRLJTLJrrMet’/\( Polpy )=(Re|m )< SL uTlM >/\( Ry | ru )e’ob>/\—|(n(R1

b | {APD=R(I—J)ANP(I+U)=RARR=QAKey=b with D,Q diagonal and U strictly upper triangular}

Figure 1: Worksheet for the Conjugate Gradient method

compute V1». We construct a sequence of update statements and weakest preconditions
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to fulfill

Pafter = Pbefore A(B1Ap1 =11 —r2) A(81p1 = x1 —x2)
Ai2p1+p2 =r2) AN(PyAp2 = 0) A (piAp2 =0)
/\(R6r2 =0)A (rtll”z =0)A (?erz =)
As before, we deduce that exp, = r» — p1V12 and

Qs = wp("p2:=r2—p1012”, Pyfier)

= {Poefore NO1Ap1 =r1—r) AT A(Rjry =0) A(rir2 =0))
N(P{A(r2 — p1v12) = 0) A (plA(r2 — p1v12) =0)}
{Poefore NB1Ap1 =11 —1r2) N(Ryra =0) A (rir2 = 0))

N(P{Ary = 0) A (piAr, — p1v),Ap1 =0)}
Similarly, we can determine vis := exp; = pjAr:/piAp; and
03 = wp("12:=piAr/piAp1”,Q4)
= {Ppefore NO1Ap1 =r1—r2) N(Ryr2 =0)A(rir2 =0)) APjAr, =0AT}

Elementary manipulation of identities gives
Vi = rhr/rr.

The remaining steps are identical as in the nonsymmetric case.

5 Discussion and Conclusion

At first glance, the reader may conclude that the presented extension of the FLAME
framework merely provides a ‘mental discipline’ for deriving known Krylov subspace
based algorithms. While this may become a major contribution of the project, we be-
lieve it shows a lot more promise than just that.

The reader may have already noticed that there are a number of decisions that were
made that led to the derived algorithm. Let us itemize some of these decisions and
discuss how different choices will lead to a rich family of algorithms, both differing in
mathematical respects and in performance aspects.

° The governing equation. In Section [2| we started with the governing equation

APD=R(I—J)
P(I+U)=R

The additional equation R'R = Q (diagonal) represents one choice of constraints
that can be enforced on the residual vectors. As mentioned, different choices
lead to different known methods, such as Steepest Descent or GMRES.
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We believe the presented methodology will be able to clarify how all these meth-
ods are related, but drawing up the constraints is work still to be undertaken. Our
framework will make it far easier for a human expert to derive new algorithms,
since only the basic notion (orthogonality of the residuals in the CG case) needs
to be specified on top of the basic equations: the derivation of the actual con-
stants is done through a systematic, indeed automatable, process.

. PME manipulation. Even within the context of a single method such as CG,
manipulation of the PME can be interesting. We already saw this mechanism in
action when equation (I0)), which is not strictly part of the definition of the CG
method, was added. In [6], this mechanism was used to argue that our approach
can discover variant algorithmic variants that combine inner products [4, [5]].

° Choices of invariants. The governing equation leads to a PME, which is a re-
cursive definition of the operation. But for each PME there are multiple possible
loop-invariants. Some of these may lead to uncomputable formulations; other
may lead to distinct algorithms that may or may not have desirable properties
for a given situation (see [[6] for an example).

° How to choose. Given that we expect a large family of algorithms to result from
the ultimate approach, we need to develop a way of determining which algorithm
is most appropriate for a given situation. Measures of “goodness” could include
computational cost, numerical stability, rate of convergence, or ability to reduce
communication cost on, for example, a distributed memory parallel architecture.
There is a distinct possibility of reasoning about such factors in our framework,
which we are undertaking in separate research.

We conclude that our framework supports a vision for exploration of Krylov subspace
methods as a coherent family of algorithms, as well as the derivation of proved cor-
rect library software. The discussion above shows that the space to be explored is
large, which is where mechanization becomes an important part of the solution. How
to achieve mechanization of derivation for dense matrix computations was the subject
of the dissertation of one of the authors [2]. His system will need to be expanded to
achieve what we propose. In other words, there is a lot of interesting research ahead of
us.
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