
TACC Technical Report TR-07-02

Applying Formal Derivation Techiques to Krylov Subspace
Methods

Victor Eijkhout∗ and Paolo Bientinesi† and Robert van de Geijn‡

This technical report is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that anyone wanting to cite or reproduce
it ascertains that no published version in journal or proceedings exists.

Permission to copy this report is granted for electronic viewing and single-copy printing. Permissible uses are research
and browsing. Specifically prohibited are sales of any copy, whether electronic or hardcopy, for any purpose. Also
prohibited is copying, excerpting or extensive quoting of any report in another work without the written permission of
one of the report’s authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no warranty, express or implied, nor
assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed.

∗ Texas Advanced Computing Center, The University of Texas at Austin
† RWTH-Aachen, Germany
‡ Computer Science Department, The University of Texas at Austin

Abstract

In a series of papers, it has been shown that algorithms for dense linear algebra operations can be systemati-
cally and even mechanically derived from the mathematical specification of the operation. A frequent question
has been whether the methodology can be broadened to iterative methods. In this paper, we show that this is
indeed the case for so-called Krylov subspace methods.

Our aims with this are two-fold: first of all, we show how the FLAME paradigm can simplify the derivation of
subspace methods. In view of this, the fact that we only derive the classical conjugate gradient method should
be viewed as a promise for the future, rather than as a limitation of this approach.

Secondly, and more importantly, our use of FLAME shows how mechanical reasoning can derive full algo-
rithm specifications from the constraints (for instance, orthogonality conditions) on the generated results. If
we tie this to ongoing research in automatic optimized code generated in FLAME, we see that this research is
a necessary building block towards automatic generation of optimized library software.

Thus, our application domain of iterative methods is a proof-of-concept of the formalization of algorithm
design and library generation.

Eijkhout et al Formal derivation of Krylov methods

1 Introduction

We present the Conjugate Gradient (CG) algorithm [8] in the FLAME framework [15]. With this, we have two
goals in mind. First, we show how FLAME can be used to simplify the process of deriving iterative methods.

Traditional expositions of this method, and ones related to it, posit the basic form of relations between ma-
trices and vectors, and computing the scalar coefficients in them by ‘lengthy induction arguments’ [11]. Our
presentation is very much in the spirit of Householder’s derivation [9], where both vector and scalar sequences
are summarized as matrices. The big advantage here is that we can dispense with quantified statements over
sequences, and instead consider simple predicates over simple, unindexed, objects.

Demonstrating the power of this approach, we derive a CG method for nonsymmetric systems in about half
a page; a feat that warranted a whole research paper in the classical approach to polynomial iterative meth-
ods [16, 10].

Beyond simply presenting an alternative derivation of these methods, we argue that the essential calculations
in a FLAME worksheet, contained in the update step, can be derived mechanically from the loop invariant
of the algorithm. Coupling this to ongoing projects for automatic code generation from FLAME worksheetS,
this raises the possibility of automatic generation of numerical libraries. Krylov subspace methods are then
merely a proof-of-concept of a much more general idea: the mechanical derivation of algorithms and tuned
library software incorporating these algorithms.

2 Theory

In this paper we will derive the Conjugate Gradients method using a block formalism [1, 9]. Rather than
positing the basic form of the coupled recurrences of residuals and search directions, we derive their existence
as it were ‘from first principles’. This will give a clear separation between the basic form of the update
equations, which hold for all polynomial iterative methods, and the specific values of the coefficients which
follow from orthogonality requirements.

This first section serves to familiarize the reader with the block formalism, and to establish the basic equations,
as well the question of their essential degrees of freedom. These dofs will then be derived in subsequent
sections.

Let the linear system Ax = b be given, and let x0 be any vector. Define r0 = Ax0−b, then r0 = Ax0−b implies
that x = A−1b = x0−A−1r0.

Now, the Cayley-Hamilton theorem tells us that for every A there exists a polynomial φ(x) such that φ(A) = 0.
Without loss of generality, we can write φ(x) = 1 + xπ(x) with π another polynomial. Then 0 = φ(A) =
I + Aπ(A) and hence A−1 = −π(A) so that x = x0 + π(A)r0. Now, if we know the coefficients of π(x), we
would be done in theory. The problem is that we don’t know the coefficients, and even if we knew them, the

TR-07-02 1

Eijkhout et al Formal derivation of Krylov methods

degree of the polynomial might be too high for practical use. Thus we arrive at the notion of a sequence of
polynomials {π̃(i)}i and a sequence of approximations1

xi = x0 + π̃
(i)(A)r0 (1)

that, we hope, converge to the solution.

We now need the basic concept of a ‘Krylov sequence’, which, given n× n matrix A and initial vector k0, is
defined as the matrix with infinite number of columns

K〈A,k0〉 ≡
(

k0 Ak0 A2k0 · · ·
)
.

In other words, the jth column of K〈A,k0〉, k j, is defined by

k j =

{
k0 if j = 0
Ak j−1 otherwise.

With this, we rewrite Equation (2) as

xi+1 = x0 +K〈A,r0〉


π̃0i
...

π̃ii

0
...

 (2)

where π̃i j is the i-th coefficient of the polynomial π̃(j). Introducing the matrices

J =

0 0 · · ·
1 0 · · ·

0
.

 and E =

1 1 · · ·
0 0 · · ·

0
.

 so that J−E =

−1 −1 · · ·
1 0 · · ·

0
.

 (3)

we can write Equation (2) in matrix form as

X(J−E) = KŨ , (4)

where from now on we will write K for K〈A,r0〉, X = (x0,x1, · · ·), and Ũ is the upper triangular matrix
containing the π̃i j coefficients. (Note that we regularly abbreviate vector sequences in block notation: K =
(k0,k2, . . .) leaving unspecified whether this is an infinite sequence or a finite part of it.)

Equivalently, by substituting U ← Ũ(I− Jt), we find

X(J− I) = KU (5)

1. In the whole of this document we will use zero-based indexing, including for indexing matrix elements.

TR-07-02 2

Eijkhout et al Formal derivation of Krylov methods

which is now shorthand for the common form xi+1 = xi +π(i)(A)r0 for some sequence of polynomials {π(i)}i,
where the ith column of upper triangular U holds the coefficients of polynomial π(i). This leads us to our
formal definition:

Definition 1 We call a sequence X = (x0,x1, . . .) a polynomial iterative method if it satisfies

xi+1 = xi +π
(i)(A)r0

for some sequence of polynomials {π(i)}i with deg(π(i)) = i. Notation: X = P〈{πi}i≥0,A,x0, f 〉.

Of equal interest is the corresponding sequence of residuals: R = (r0,r1, . . .), where ri = b−Axi:

Definition 2 We call R a ‘residual sequence’ if it is the sequence of residuals of a polynomial iterative
method X wrt A and f :

R = AX− f et or ri = Axi− f .

Notation: R = R〈A,X , f 〉.

Lemma 1 Let a matrix A a vector f and a sequence X be given. Let R = R〈A,X , f 〉. Then

∃{πi∈P(n)} : X = P〈{πi}i≥0,A,x0, f 〉
⇔ ∃U∈U(n) : R〈A,X , f 〉= K〈A,x0, f 〉U

where U(n) is the set of upper triangular matrices U satisfying u0∗ = 1.

Proof: Suppose X is generated by a polynomial iterative method P〈{πi}i≥0,A,x0, f 〉. Multiplying the equa-
tion

xi+1 = x0 +πi(A)r0

by A and subtracting f on both sides gives

ri+1 = r0 +Aπi(A)r0,

in other words, ri+1 = φi+1(A)r0 with φi(x) = 1 + xπi(x). This can clearly be written R = KU where U =
U(φi) ∈ U(n) and K = K〈A,r0〉. It is easy to see that all implications in this proof are equivalences. •

With X a polynomial iterative method and R its residual sequence, we now immediately see that X can also
be defined as

X(J− I) = RU (6)

for some upper triangular matrix U . We can now prove:

TR-07-02 3

Eijkhout et al Formal derivation of Krylov methods

Lemma 2 Residual sequences satisfy AR = RH with H an upper Hessenberg matrix with zero column sums.

Proof: Taking equation (6), multiplying by A, and adding − f + f to the lhs, gives

R(J− I) = ARU ⇒ AR = R(I− J)U−1 = RH

where we note that H is as stated. We omit the proof that this is in fact an equivalence. •

Now we consider factoring the H matrix. If we leave the length of the R sequence indeterminate, the factors
of H will be semi-infinite too; if we take a finite part Rn, then the following statement will hold by letting H
be of size (n+1)×n.

Lemma 3 A hessenberg matrix H has zero column sums iff its factorization is of the form

H = (I− J)U.

We now derive the coupled recurrences form of polynomial iterative methods:{
AR = RH
H has zero column sums

⇔ AR = R(I− J)D−1(I−U)⇔

{
APD = R(I− J)
P(I−U) = R

(7)

In this, we recognize the traditional formulation

ri+1 = ri−Apidii, pi+1 = ri+1 + ∑
j≤i

p ju ji.

Note that this form holds for any polynomial iterative method; various iterative methods (CG, MinRes,
BiCGstab) all follow from imposing certain conditions on R, or equivalently on the coefficients of D and U .
For instance, stationary iteration and steepest descent correspond to U ≡ 0; the Conjugate Gradients method
corresponds to U being single upper diagonal, with values deriving from the orthogonality of R.

In the remainder of this paper, we will take the block form (7) for given, and show how FLAME can be used
to derive the coefficients in D and U .

3 (ultra) Brief introduction to FLAME

Here we give a very simple (in fact, simplified by leaving out many details) example to convey the mode of
reasoning in FLAME. Let J be the matrix

J =


0 /0

1
. . .
.


TR-07-02 4

Eijkhout et al Formal derivation of Krylov methods

and let us consider the equation AK = KJ with the first column of K given, where all matrices are of size n×n,
where n > 1. The reader of course recognizes this as a block formulation2 of the Krylov sequence with
coefficient matrix A and starting vector k0.

We will now derive an iterative algorithm for constructing a matrix K that satisfies this equation. It is enough
if we can show that a single iteration leaves a loop invariant predicate satisfied3 In the FLAME methodology,
this start by partitioning the matrices involved4:

K =
(

KL kM KR
)
, J =

 JT L 0 0
jtML 0 0
0 jMR JBR

 ,

{
jtML = (0, . . . ,0,1)
jMR = (1,0, . . . ,0)t (8)

This means that, for the equation AK = KJ to hold, the following system needs to be satisfied:
AKL = KLJT L + kM jtLM

AkM = KR jMR

AKR = KRJBr

The crucial step in the derivation is the choice of the invariant; in this case we choose the first equation as the
invariant that holds at the start of an iteration.

Now we derive the steps that need to be taken to let the invariant hold at the end of the iteration. We split one
column off the KR block (the thick line indicates the location of the block from which the column is split):(

KL kM KR
)
→
(

K0 k1 k2 K3
)

At the end of the iteration, the predicate has to hold for one more column, so the new partition will be(
K0 k1 k2 K3

)
→
(

KL kM KR
)

In other words, in the partitioned equation

A
(

K0 k1 k2 K3
)

=
(

K0 k1 k2 K3
)

J00 /0

1 0
1 0

/0 j23 J33

 (9)

we assume that at the start of an iteration AK0 = K0J00 + k1 is satisfied, and at the end of an iteration the
additional ‘after’ equation of Ak1 = k2 has to be satisfied.

In conclusion, computing k2 ← Ak1, where k1,k2 are columns in the iteration-dependent partitioning of K,
will make the equation AK = KJ inductively be satisfied for the n×n matrix K.

2. In the sense of summarizing a complete vector sequence as a block, not in the sense of iterating on blocks.
3. One of our simplifications is the ignoring of initial and final conditions on the process.
4. In the traditional FLAME approach [15], a 2×2 partition is used. We will use a 3×3 partition instead.

TR-07-02 5

Eijkhout et al Formal derivation of Krylov methods

This example, while admittedly of a rather trivial algorithm, illustrates the principle how FLAME,
starting from a non-algorithmic description, derives the steps that will keep a loop-invariant pred-
icate inductively satisfied, thus yielding an algorithm implementation that is proved correct.

Step
Annotated Algorithm:
Compute K of size m×n so that AK∗,0:n−1 = KJ and K∗,0 = b

1a { K∗,0 = b}

3

Partition

K→
(

KL kM KR
)
, J =

 JT L 0 0
jtML 0 0
0 jMR JBR

 ,

{
jtML = (0, . . . ,0,1)
jMR = (1,0, . . . ,0)t

where n(k2) = 1
2 { AKL = KLJT L + kM jtML}
4 While n(KR) > 0 do

2,4 {(AKL = KLJT L + kM jtML)∧ (n(KR) > 0)}

5a

Repartition(
KL kM KR

)
→(

K0 k1 k2 K3
) ,

 JT L 0 0
jtML 0 0
0 jMR JBR

→


J00 0 0 0
jt10 0 0 0
0 1 0 0
0 0 j32 J33


where

6
{

AK0 = K0J00 + k1
}

8
{

k2 = Ak1
}

7

 A
(

K0 k1
)

=
(

K0 k1 k2
) J00 0

jt10 0
0 1

 
5b

Continue with(
K0 k1 k2 K3

)
→
(

KL kM KR
)
, likewise for J

2 { AKL = KLJT L + kM jtML}
endwhile

2,4 {(AKL = KLJT L + kM jtML)∧¬(n(KR) > 0)}
1b { AK∗,0:n−1 = KJ, K∗,0 = b}

Figure 1: Worksheet for the Krylov sequence

4 Hestenes-Stiefel CG

We will now show that this notion, can be used to derive iterative methods such as the CG algorithm.

TR-07-02 6

Eijkhout et al Formal derivation of Krylov methods

Using a 3×3 partition as in equation (8), the equations for residuals and search directions, under orthogonality
of the residuals,

APD = R(I− J), P(I−U) = R, RtR = Ω diagonal

turn into the following set of equations:

(
APLDL ApMdM APRDR

)
=
(

RL rM RR

) JT L 0 0
jtML 1 0
0 jMR JBR


(

PL pM PR

) UT L uT M uT R

0 1 uMR

0 0 UBR

=
(

RL rM RR

)
 RL

rM

RR

(RL rM RR

)
=

 ΩT L 0 0
0 ωMM 0
0 0 ΩBR


(10)

The FLAME approach now takes this partition, and lets the middle column, or row and column, traverse the
partitioned matrix. That is, the basic iteration:

• Assumes that part of the partitioned matrix, for instance the PL and pM blocks, have already been
computed correctly;

• Splits off one column, or row and column, from the uncomputed part:(
PL pM PR

)
→
(

P0 p1 p2 P3
)

This will yield a set of ‘before’ equations that are presumed to be satisfied in the current iteration.
Under the above assumption that PL and pM are correctly computed, this will be a set of equations for
P0 and p1.

• Then considers the implications of advancing the iteration by repartitioning the matrix:(
PL pM PR

)
←
(

P0 p1 p2 P3
)

This gives rise to a larger set of equations, the ‘after’ equations. Under the assumption that PL and pM

are correctly computed, this will be a set of equations for P0, p1, and p2. Some of these may already
be satisfied as part of the ‘before’ equations; the remaining ones define the operations that preserve the
loop invariant when the iteration advances.

We now consider the Partitioned Matrix Expression (PME) (10), and for the invariant we let the equation
APD = R(I− J) hold in the L column, and P(I−U) = R in both the L and M columns. (This is a conscious

TR-07-02 7

Eijkhout et al Formal derivation of Krylov methods

choice by no means the only possible one. We will explore a different choice, which has different computa-
tional ramifications, in section 4.3.)

(
APLDL

)
=
(

RL rM

)(JT L

jtML

)
(

PL pM

)(UT L uT M

0 1

)
=
(

RL rM

)
(

RT

rM

)(
RL rM

)
=

(
ΩT L 0

0 ωMM

) (11)

4.1 Partitions and before/after equations

The partition before the update is

(
RL rM RR

)
↓(

R0 r1 r2 R3
),

 JT L 0 0
jtML 1 0
0 jMR JBR


↓

J00 0 0 0
jt10 1 0 0
0 −1 1 j23

0 0 0 J33


,

(
PL pM PR

)
↓(

P0 p1 p2 P3
),

 UT L uT M uT R

0 1 uMR

0 0 UBR


↓

U00 u01 u02 u03

0 1 u12 u13

0 0 1 u23

0 0 0 U33


After performing the update, repartition:

(
RL rM RR

)
↑(

R0 r1 r2 R3
),

 JT L 0 0
jtML 1 0
0 jBM JBR


↑

J00 0 0 0
jt10 1 0 0
0 −1 1 0
0 0 j32 J33


,

(
PL pM PR

)
↑(

P0 p1 p2 P3
),

 UT L uT M uT R

0 1 uMR

0 0 UBR


↑

U00 u01 u02 u03

0 1 u12 u13

0 0 1 u23

0 0 0 U33



TR-07-02 8

Eijkhout et al Formal derivation of Krylov methods

Before the update, the invariant reads:

AP0Dd = R0J00 + r1 jt10,
(

P0 p1

)(U00 u01

1

)
=
(

R0 r1

)
,

(
Rt

0

r1

)(
R0 r1

)
=

(
Ω0 0
0 ω1

)
,

(
Pt

0

pt
1

)
A
(

P0 p1

)
=



(
Pt

0AP0 0
pt

1AP0 pt
1Ap1

)
general case(

Pt
0AP0 0
0 pt

1Ap1

)
symmetric case.

(12)

After the update, the first line of the invariant reads:

A
(
P0 p1

)(D0
d1

)
=
(
R0 r1

)(J00
jt10 1

)
+ r2

(
0̄ −1

)
(

P0 p1 p2
) U00 u01 u02

0 111 u12
0 0 122

=
(

R0 r1 r2
)

(13)

The extra equations that need to be satisfied to have the invariant satisfied after the update are:

Ap1d1 = r1− r2, P0u02 + p1u12 + p2 = r2.

These equations describe the updates for P and R; they involve coefficients that are still to be determined.
For the computation of these, we have the diagonality of rt

iAr j and the lower triangularity (general case;
diagonality for the symmetric case) of pt

iAp j.

4.2 Computation of coefficients

Computing the D coefficients In the derivation of the coefficients we need some auxiliary facts that follow
from the invariant equations. We start by multiplying equation (13):

(
R0 r1 r2

)
×

(P0 p1 p2
) U00 u01 u02

0 111 u12
0 0 122

=
(

R0 r1 r2
)

⇒

 Rt
0P0 Rt

0 p1 Rt
0 p2

rt
1P0 rt

1 p1 rt
1 p2

rt
2P0 rt

2 p1 rt
2 p2

 U00 u01 u02
0 111 u12
0 0 122

=

 Ω0 0 0
0 ω1 0
0 0 ω2

 (14)

TR-07-02 9

Eijkhout et al Formal derivation of Krylov methods

From equation (14) we derive necessary conditions such as rt
2 p1 = 0. The sufficient conditions are

Rt
0r2 = 0 this is Rt

0r1−Rt
0Ap1d1 = 0−0 from the before equations and the lower triangularity of rt

iAp j

rt
1r2 = 0 this is rt

1r1− rt
1Ap1d1 so this is satisfied if d1 = rt

1r1/rt
1Ap1

rt
2P0U00 = 0 satisfied since rt

2P0 = rt
1P0−d1 pt

1AtP0 and pt
iAp j is lower triangular

rt
2 p1 = 0 note rt

2 p1 = rt
1 p1−d1 pt

1At p1 so this reduces to the requirement that d1 = rt
1 p1/pt

1Ap1.

Since rt
1r1 = rt

1 p1 and rt
1Ap1 = pt

1Ap1, we find that

d1 =
rt

1r1

pt
1Ap1

. (15)

is the sole necessary and sufficient condition.

Additionally, we now conclude from (14) that the matrix Rt
iPj is upper triangular.

Equations for Pt
i APj Using the upper triangularity of Rt

iPj, or equivalently the lower triangular of Pt
i R j, we

get  Pt
0R0 0 0

pt
1R0 pt

1r1 0
pt

2R0 pt
2r1 pt

2r2

 J00 0 0
jt10 1 0
0 j12 J22

=

 Pt
0AP0 Pt

0Ap1 Pt
0Ap2

pt
1AP0 pt

1Ap1 pt
1Ap2

pt
2AP0 pt

2Ap1 pt
2Ap2


=

 Pt
0AP0 0 0

pt
1AP0 pt

1Ap1 0
pt

2AP0 pt
2Ap1 pt

2Ap2

 (16)

where we conclude the zeros in the rhs from the form of the lhs. In the case of a symmetric coefficient
matrix A, the rhs is both lower triangular and symmetric, hence diagonal. This gives the general statement that
pt

iAp j = 0 for i 6= j.

Computating the U coefficients Next we consider the computation of the U coefficients in the P(I−U) = R
equation. Since the first two columns are satisfied as part of the before equations, it is necessary and sufficient
to satisfy the equations in the third column. We multiply them:Rt

0
r1
r2

×
(P0 p1 p2

)−u02
−u12

1

= r2


giving (where we use parts of equation (14) to zero some coefficients)Rt

0P0 Rt
0 p1 Rt

0 p2
0 rt

1 p1 rt
1 p2

0 0 rt
2 p2

−u02
−u12

1

=

 0
0

rt
2r2

 (17)

TR-07-02 10

Eijkhout et al Formal derivation of Krylov methods

The third row contains the known fact that rt
2 p2 = rt

2r2, but the second row reads

−rt
1 p1u12 + rt

2 p2 = 0⇒ u12 =
rt

1 p2

rt
1r1

In the symmetric case we observe that pt
2r2 = pt

2r1 + pt
2Ap1d1 = pt

2r1 (using the symmetry of Pt
i APj, observed

above), so, combined with pt
2r2 = rt

2r2, we find

u12 =
rt

2r2

rt
1r1

. (18)

Next we show that u02 = 0 in the symmetric case. Taking the first column of the R(J− I) = APD equation and
left multiplying it by p2 we get  Pt

0
pt

1
pt

2

[AP0D0 =
(

R0 r1
)(J00

jt10

)]
 Pt

0AP0
pt

1AP0
pt

2AP0

D0 =

 Pt
0AP0
0
0

D0 =

 Pt
0R0 0

pt
1R0 pt

1r1
pt

2R0 pt
2r1

(J00
jt10

)
In the second row, we see

pt
1r1J10 = pt

1R0J00 + pt
1AP0D0 = pt

1R0J00 so pt
1R0 = pt

1r1J10J−1
00 = rt

1r1J10J−1
00 . (19)

Similarly, the third row, we have

pt
2r1J10 = pt

2R0J00 + pt
2AP0D0 = pt

2R0J00 so pt
2R0 = pt

2r1J10J−1
00 = rt

2r2J10J−1
00 . (20)

Together, this gives us for the first row of equation (17)

(
Rt

0R0 J−t
00 Jt

10rt
1r1 J−t

10 rt
2r2
) u02
−rt

2r2/rt
1r1

1

= 0

from which u02 = 0 readily follows. (In fact, we are free to ignore this analytical conclusion, and compute u02
from this equation, for added numerical stability.)

TR-07-02 11

Eijkhout et al Formal derivation of Krylov methods

Computing the u coefficients in the nonsymmetric case .

The above derivation of the coefficients u12 (and the derivation that u02 was zero) depended on the diagonality
of PtAP. In the nonsymmetric case this no longer holds: as observed before, PtAP is lower triangular in
general. To use equation (17) and the following reasoning (equations (20) and (19)) in the general case, we
needs expressions for, among others, pt

2AP0. This is problematic, since p2 is unknown.

However, we observe that p2 is computed after r2, and so we try to express pt
iAp j coefficients in terms of

rt
iAr j.

From the equation R = P(I−U) we get

RtAR = (I−U)tPtAP(I−U),

which specifically translates as Rt
0AR0 Rt

0Ar1 Rt
0Ar2

rt
1AR0 rt

1Ar1 rt
1Ar2

rt
2AR0 rt

2Ar1 rt
2Ar2

=

U t
00

ut
01 1

ut
02 ut

12 1

Pt
0AP0

pt
1AP0 pt

1Ap1
pt

2AP0 pt
2Ap1 pt

2Ap2

U00 u01 u02
1 u12

1


=

 U t
00Pt

0AP0
ut

01Pt
0AP0 + pt

1AP0 pt
1AP1

∗ ∗ ∗

U00 u01 u02
1 u12

1


which is an equation of the form (rt

iAr j) = L̃U . From this we get, by examining the (0,2) position

Rt
0Ar2 = L̃00u02 where L̃00 = U t

00Pt
0AP0

which gives us u02, and subsequently the (1,2) position gives

rt
1Ar2 = L̃10u02 + L̃11u12 where L̃10 = ut

01Pt
0AP0 + pt

1AP0 and L̃11 = pt
1Ap1

from which u12 easily follows.

Note that here we have derived in less than a page an algorithm for the nonsymmetric CG method,
a feat that used to merit a whole research paper.

4.3 Invariant #2

Derivations made with FLAME are by no means unique. Different choices of PMEs can lead to algorithms
that differ, for instance, by a loop interchange, or their choice of kernel operations. We will illustrate this for
the CG algorithm. The variant we derive is correct, but can not express the work savings in the symmetric
case. Hence, it is identical to the previous algorithm in the nonsymmetric case, but wasteful in the symmetric
case.

TR-07-02 12

Eijkhout et al Formal derivation of Krylov methods

We base the algorithm on just taking the L column of both equations:

(
APLDL ApMdM APRDR

)
=
(

RL rM RR
) JT L 0 0

jtML 1 0
0 jMR JBR


and (

PL pM PR
) UT L uT M uT R

0 1 uMR

0 0 UBR

=
(

RL rM RR
)

After the update, the invariant reads:

A
(
P0 p1

)(D0
d1

)
=
(
R0 r1

)(J00
jt10 1

)
+ r2

(
0̄ −1

)
(
P0 p1

)(U00 u01
1

)
=
(
R0 r1

)
giving update equations

Ap1d1 = r1− r2,

We now have the problem of computing the U01 coefficient. The solution is much like before.

We multiply the P update equation: (
Rt

0
rt

1

)
×
[(

P0 p1
)(−u01

1

)
= r1

]
Using the fact that rt

1P0 = 0, we get (
Rt

0P0 Rt
0 p1

0 rt
1 p1

)(
−u01

1

)
=
(

0
rt

1r1

)
which gives rt

1 p1 = rt
1r1 and

u01 =
Rt

0 p1

Rt
0P0

=
rt

1r1

Rt
0P0

where for the numerator we used

pt
1× [r1 = R0 +AP0]⇒ pt

1r1 = pt
1R0 + pt

1AP0 = pt
1R0

TR-07-02 13

Eijkhout et al Formal derivation of Krylov methods

5 On formal derivation

Our problem of constructing P and R can be formulated as a general problem

Θ(A,x0,b,R,P,U,D) = 0 where Θ(A,x0,b,R,P,U,D) =


R∗0− (Ax0−b)
APD−R(I− J)
P(I−U)−R
RtR−diag(RtR)

The problem is in realizing the transition from this prescriptive statement to an algorithmic formulation. Partly,
this requires structural reasoning. For instance, the equation APD = R(I− J) translates to Apidi = ri− ri+1,
and since we know r0, the ri vectors can now be derived in sequence.

Other facts are harder to determine. The value of di (and ui j) only followed from a complicated reasoning
where equations were multiplied by quantities, and known facts substituted in the resulting equation. Ulti-
mately, an equation with a single unknown was produced.

Formally, this is a breadth-first search process, where new levels are derived by multiplying results in previous
levels together. In fact, continuing this process can lead to discovery of new algorithms. We will illustrate
this by deriving a CG method that was motivated by a reorganization of the inner products [3, 12, 14, 6].
Such reorganizations are mostly motivated from a point of parallel computing, where each inner product is a
synchronization point.

5.1 A CG variant

The CG algorithm, as described above, contains two inner products that are interdependent, thus introducing
two global synchronization points per iteration in a parallel computing context. For this reason, a number
of variants have been derived where the inner products can be computed simultaneously. Here we give the
derivation of one possible variant [3, 5]; several others exist [12, 4, 7].

We start from the basic iterations

APD = R(I− J), P(I−U) = R

and introduce some auxiliary quantities and relations

QD = R(I− J), Q = AP, P(I−U) = R, Q(I−U) = S, S = AR.

The crucial step is the replacement of the PtAP inner product by RtAR, which follows from the relation

(I−U)tPtAP(I−U) = RtAR.

TR-07-02 14

Eijkhout et al Formal derivation of Krylov methods

Writing this out in block form gives U t
00 0 0

ut
01 1 0

ut
02 ut

12 U t
22

 Pt
0AP0 0 0
0 pt

1Ap1 0
0 0 pt

2Ap2

 U00 u01 u02
0 1 u12
0 0 1

=

 Rt
0AR0 Rt

0Ar1 Rt
0Ar2

rt
1AR0 rt

1Ar1 rt
1Ar2

rt
2AR0 rt

2Ar1 rt
2Ar2


which contains the following equations:

U t
00Pt

0AP0U00 = Rt
0AR0

ut
01Pt

0AP0u01 + pt
1Ap1 = rt

1Ar1

ut
02Pt

0AP0u02 +ut
12 pt

1Ap1u12 + pt
2Ap2 = rt

2Ar2

These can be interpreted as recurrence relations for the pt
iApi quantities, for instance

pt
1Ap1 = rt

1Ar1−ut
01Pt

0AP0u01.

We note that this gives us indeed the pt
1Ap1 quantity that is needed for the computation of d1; equation (15).

However, since u01 is a dense vector, this requires the dense block of inner products Pt
0AP0, of which we only

know the diagonal. A better solution is to take the third relation, which in the symmetric case reduces to the
simple scalar equation

pt
2Ap2 = rt

2Ar2−ut
12 pt

1Ap1u12.

Now we have the problem that we are computing pt
2Ap2 instead of pt

1Ap1. In effect, we are computing a
quantity one iteration to early. This problem can be solved in the following ways.
• We apply a compiler transformation that will carry this quantity to the next iteration. This involves the

introduction of a new technology into the FLAME framework, which we would like to avoid.
• We can use a 4×4→ 5×5→ 4×4 scheme. This option lets us stay firmly within the FLAME frame-

work without invoking new capabilities, however, the addition of yet another row and column to the
partition feels forced and unnecessary.

• Rather than letting the various inner products be temporary quantities, to be computed on demand, we
can incorporate them into the demands of the algorithm. Thus we can compute pt

1Ap1 in one iteration,
and use it in the next. While this is an elegant solution, it requires coming up with a non-trivial extension
to the invariant.

The jury is still out on this.

6 Conclusion
In this paper we showed how reasoning about Krylov methods can be done systematically, even mechani-
cally, in the FLAME framework. Basic update equations follow from the invariant, analogous to many earlier
algorithms derived in FLAME.

A novel aspect is formed by scalars in the algorithm, which we derive from the constraints (such as orthogo-
nality conditions) on the vectors computed. It is our hope that this reasoning can be implemented in a symbolic
system, such as an automatic theorem prover. A prototype system exists [2, 13], though of more limited scope.

TR-07-02 15

Eijkhout et al Formal derivation of Krylov methods

References

[1] Steven F. Ashby, Thomas A. Manteuffel, and Paul E. Saylor. A taxonomy for conjugate gradient meth-
ods. SIAM J. Numer. Anal., 27:1542–1568, 1990.

[2] Paolo Bientinesi and Robert van de Geijn. Automation in dense linear algebra. Technical Report AICES-
2008-2, Aachen Institute for Computational Engineering Science, RWTH Aachen, October 2008.

[3] A. Chronopoulos and C.W. Gear. s-step iterative methods for symmetric linear systems. Journal of
Computational and Applied Mathematics, 25:153–168, 1989.

[4] E.F. D’Azevedo, V.L. Eijkhout, and C.H. Romine. Lapack working note 56: Reducing communication
costs in the conjugate gradient algorithm on distributed memory multiprocessor. Technical Report CS-
93-185, Computer Science Department, University of Tennessee, Knoxville, 1993.

[5] E.F. D’Azevedo, V.L. Eijkhout, and C.H. Romine. A matrix framework for conjugate gradient meth-
ods and some variants of cg with less synchronization overhead. In Proceedings of the Sixth SIAM
Conference on Parallel Procesing for Scientific Computing, pages 644–646, Philadelphia, 1993. SIAM.

[6] E.F. D’Azevedo and C.H. Romine. Reducing communcation costs in the conjugate gradient algorithm
on distributed memory multiprocessors. Technical Report ORNL/TM-12192, Oak Ridge National Lab,
1992.

[7] J. Demmel, M. Heath, and H. Van der Vorst. Parallel numerical linear algebra. In Acta Numerica 1993.
Cambridge University Press, Cambridge, 1993.

[8] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Nat. Bur.
Stand. J. Res., 49:409–436, 1952.

[9] Alston S. Householder. The theory of matrices in numerical analysis. Blaisdell Publishing Company,
New York, 1964. republished by Dover Publications, New York, 1975.

[10] Kang C. Jea and David M. Young. Generalized conjugate-gradient acceleration of nonsymmetrizable
iterative methods. Lin. Alg. Appl., 34:159–194, 1980.

[11] John Gregg Lewis and Ronald G. Rehm. The numerical solution of a nonseperable elliptic partial
differential equation by preconditioned conjugate gradients. J. Res. Nat. Bureau of Standards, 85:367–
390, 1980.

[12] Gerard Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48. Parallel Comput-
ing, 5:267–280, 1987.

[13] Sergey Kolos Paolo Bientinesi and Robert van de Geijn. Automatic derivation of linear algebra al-
gorithms with application to control theory. In Proceedings of PARA’04 State-of-the-Art in Scientific
Computing, June 20-23, 2004.

[14] Yousef Saad. Practical use of some krylov subspace methods for solving indefinite and nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput., 5:203–228, 1984.

[15] Robert A. van de Geijn and Enrique S. Quintana-Ortı́. The Science of Programming Matrix Computa-
tions. www.lulu.com, 2008.

[16] P.K.W. Vinsome. ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equa-
tions, paper SPE 5729. In 4th Symposium of Numerical Simulation of Reservoir Performance of the
Society of Petroleum Engineers of the AIME, Los Angeles, 19–20 February 1976.

TR-07-02 16

	Introduction
	Theory
	(ultra) Brief introduction to FLAME
	Hestenes-Stiefel CG
	Partitions and before/after equations
	Computation of coefficients
	Invariant #2

	On formal derivation
	A CG variant

	Conclusion

